0 /l 0129320285

Mechanical Pong

| have developed a Mechanical Pong game based off the computer Pong game from
the 70’s for my electronics project. For the creation of this product many complex
concepts from software and hardware were used to guide the outcome that | have
made. Using my Mechanical Pong game, | will be discussing these software and
hardware concepts. The outcome | have created used Linear potentiometers for the
players paddle input, limit switches to provide more feedback to the program that
runs the game to say where the stepper motors are, stepper motors for the XY
movement of the Pong ball and movement of the paddles, and seven segment
displays to show the players what the score is. The complex concepts that were
used in this system were for the hardware side Suitability of the Microcontroller, H-
Bridge and Stepper Motor Control, and Multiple Actuators. For the software side
Structuring Complex Programs Logically, Flags, and Interrupts.

Software Concepts

Structuring Complex Programs Logically

For creating complex programs such as the one | have created to drive the
Mechanical Pong game it is very important to have them structured logically. This is
because without logical structuring maintaining and troubleshooting code becomes
an extremely daunting task. This is why | have used declaring variables at beginning
of code, declaring Arduino pins as variables, using functions, and giving variables
descriptive names to help with the creation of my outcome.

Declaring Variables at Beginning of Code

Declaring variables at beginning of #include <PCFB574.h>

code is very straight forward, when R (ox20y; /7 s

) . . tepperExpander {O0x20) 5 Set
creating the variables that will be used const int atepsPerRev = 200; //Set sti
throughout the program, they will be

placed at the top of the code alongside //can't do digitalRead on the pins to

all of the other variables. For mine | bool stepperOne[2] = {false, false};
have grouped them at the top of the bool atepperTwo{2] = {false, falae);
code as well as organising them in bool acepperThree([2] = {false, false},

groups of what their function relates to, = Pool stepperFour[2] = {false, false};

for the case of the stepper motors G Bintar ik pine et .
states, they are grouped together. This _ i
has been used because by having all of const bool *stepperStatesi] = {steppe:
the variables at the beginning of the code it helps with troubleshooting as instead of
looking through the entire code to find variables and change their values they can
easily be located, along side the grouping of variables, finding the specific variable
you were looking for would be much easier therefore cutting down on time spent
programming, and cutting down on maintenance of the code. When declaring the
variable at the beginning of the program they become global variables. Global

0129320285

variables are variables that can be accessed and modified at every point in the code
and the variable will be updated everywhere. These global variables compared to
local, which can only be referenced inside the function it was created in, tend to take
more memory from the microcontroller as it is having to put aside memory for the
variable even when it is empty. However, the project | have made uses mostly global
variables as the upsides of having the variables accessed and change anywhere in
the code outweighs the downside of less memory.

Declaring Arduino Pins as Variables
|
int linPotlPin = AD;

pin numbers are also a vital part in structuring int 1inPotaPin = Al:

complex programs logically. This is because pins
are used very often in the program and because of woid setup() {

The declaration of variables that store the Arduino l'

this having ambiguous numbers such as pinMode (1inPotlPin, INEUT);
analogRead(A0) makes programming very hard to pin¥ode (11nPot2Pin, INFUT):
keep track of which numbers/letters correspond to ~ Serial.begin{8600):

which component. To solve this creation of variables
at the start of the program which store the pin
letters/numbers for example int linPot = AO is much
easier to recognise what this is referencing. Another issue that this solves is
troubleshooting, when not using declared pin variables if pins in the program needed
changing every instance of that pin being mentioned must be removed, compared to
having a variable which only one instance in that case must be changed. The most
common reason for changing pins is the component that was connected to said pin
has either been moved to another pin or replaced with another component. The risks
when missing a single instance when changing pins in the program could lead to
components not working as intended or in the worst case, damaging the components
outright

linPotVal 4= lnllo'lﬁ.l(lin!ntlh‘lll:

Using functions

Because of such a large program for this, it is inevitable to have repeating code,
however, this is always bad. This is because of for one the size constraints of the
program for it to fit onto the Arduino’s storage. Repeating code is also very hard to
maintain as repeating code tends to carry the same function, but for a different
component such as multiple stepper motors. Finally, for repeating code, it is also
very hard to make changes to the way it functions as every time a change needs to
be made it needs to be made multiple times throughout the code to cover whenever
it was used this causes an increase in the likelihood that an error will occur.
Functions allow the repeated code to be only written once in the program and to run
that piece of code the program just needs to run the function. One of the main uses
of functions in my program was with the stepper motors. Every motor has it's own
stepper states (the states in which coils are active) and it's own pins which are used

to control the stepper motor, P Rp— - imaspiniy ime gk i & RPIPTIpey

without functions every time a _ /41t stepper state is even boolean pin 2
if (stepperState[0] = stepperStare[l]}{
[= [11: //Bool state of pin 2
expander .digital¥rite {pin2, stepperStatef[l}); //Step once

= 5 s b . . gk l
pdbbd?J’ vV VLN ff1f stepper state is odd boolean pin 1 |
else{

steppersStatz[0] = !stepperitatz(0]l; //Boolean state of pin 1

expender.digitalWrite (pinl, stepperScatef[0]}: //Step amoe
}

o—mma s aa.w__ww e -

0129320285

stepper motor were to step a large chunk of code was devoted to that one step, and
for every step it needed to be repeat, this was replaced by one function which when
called takes in the parameters of which pins were used, and which states the motor
is in. The names of functions are also an important part of them as having
ambiguous names can lead to confusion as to what the specific task the function
carries out in the program.

Giving Variables Descriptive Names

This is the last part of structuring complex programs logically which heavily guided
the way the program was written. With the declaration of pins, variables and function
names in general it is very important that the names of these reflect what their
function is. This is because without proper naming the troubleshooting and
maintenance of the code would be incredibly difficult as with random or ambiguous
names for variables without commenting, or even with commenting, it is incredibly
difficult for telling which part of the program does what task even for the creator of
the program, and especially others who would want to work on it. Therefore, using
descriptive names such as stepperStates, or stepsPerRev help with the flow of the
program and help the program be structured logically. Camel case is also an
important part of descriptive naming as stepsperrev is much harder to read than
stepsPerRev. The order in'which camel case is used can also be used to
differentiate between functions and variables with functions normally starting with a
capital and variables starting in lowercase.

Flags

Flags are variables which usually have two or more states, but in most cases are
either true or false. These flags are used for the program to determine which action
should be executed next, be it the same function v ssep(cresm cexpmader, 1nx piad, 1nz piaz, boot *svegpesstate, inc delayy

//1f atepper state is evea boolean pim 2

it just carried out, or a new function. The most “ P 11 #Boctean wease of pia 3
common use for a flag is a while loop, for , “ e (s ffassy caes
example they could be used to keep running a T B —— :1 I
while loop while the stepper has not completed a | cisieainrice pind, veppesstesalol); //seep cmce
certain number of steps and once it has, go on e

to the next task in the program. The main example o e
of flags in my program are for storing the states of o -
the stepper motors. These flags are in an array of

two where each item in the array is one of the : e e
states of the coils in the stepper motor, be it active * high low
or inactive. For the stepper motor to successfully 4 o ow

step it must go to the next combination of coil

on/off for it to turn in the correct direction. This is where the flags come in, since they
store the states of the stepper motors coils it compares it to a truth table of which
step should come after the next (see image for truth table’) and from that changes
which coil is active/inactive on the stepper motor. Because the states of the variables
affect how the program behaves these variables are flags for the stepper motor. The

1 https://itp.nyu.edu/physcomp/lessons/dc-motors/stepper-motors/ ;.?e
.5.50 :
[2N [

W

0129320285

reason for using these flags is for one, using an 12C port expander and the library
used to control it, there is no way to digitalRead a pin which is set to be an output,
and because of this there must be variables to keep track of what step the stepper
motor is on. The other reason for using flags is, as mention a few times above, the
need for the program to keep track of what step the stepper motor is on. Without the
ability to know what the current step is, attempting to do the next step is near
impossible as if the stepper motor goes to the wrong step it can either go backwards
or go one step too far. In both of these cases the stepper motor will “miss” a step
resulting in jittering of the stepper motor as it moves, or if it misses steps enough, it
will stay in one spot twitching. This is why | have used flags as they give the ability of
keeping track of which coils are active and from that in the program it can find the
appropriate next step for the stepper motor.

Interrupts

Interrupts are a signal to the microprocessor that tells it to address this new
information immediately. In doing this, it pauses the task it was currently doing to
handle the new task. This can be very useful for time sensitive operations such as
gathering user inputs, or in the case of my project, being used for informing the
program immediately that the stepper motor has reached the end of the axis it is
turning on. Interrupts are used in my project with the limit switches so that when the
limit switches detect a change the Arduino will instantaneously pick the change up
and deal with it, this will be used for one calibrating the program so it knows where
its bounds for the stepper motors are, and for detecting if the stepper motor has left
it's bound while people are playing the game. These interrupts are used to tell that
the stepper motors need to stop but it's only when used in conjunction with flags that
it allows the system to respond to problems on its own. This second use for the
interrupts is very important as if the stepper motors turn so that it's out of the bound
of the game due to missed steps or incorrect calibration, it will be needed to be
stopped as soon as possible so that there is no damage caused to the machine as
forcing stepper motors against a wall will result in them breaking quickly. Limitations
with the interrupts regarding my project is that they can only detect a digital change
in state so either high to low or low to high, this means interrupts will not be able to
be used with the linear potentiometer for the users input as that takes an analogue
value which is then mapped to the stepper motor to where it should be in relation to
what the player has set their paddle to.

Hardware Concepts

Suitability of Microcontroller

For this project | needed to assess the suitability of the microcontroller as a logic-
based circuit would not be able to complete the task of running stepper motors,
seven segment displays, and other ICs. There are a few microcontrollers what could
have been used in this project such as the picaxe microcontroller, but in the end, |
decided on the Arduino microcontroller.

possessy VUZN

0129320285

Picaxe

The picaxe microcontroller is a low-cost single chip solution which is quite small, for
this project this would be ideal, however there are a few problems with this
microcontroller. One of the larger ones being | have to wire the microcontroller up
myself which is very time consuming as to get everything connected right to even get
it running. A second problem with the picaxe is the programming of it, the installation
of the programming applications is problem enough coupled with the unfriendly
interface and programming language made programming very painful, and with the
size of the program required for this project, it would make using this microcontroller
very impractical. Other issues with the picaxe are that there are not a lot of support
forums for using this, combined with a lack of libraries for controlling ICs such as a
shift register, or a I12C port expander leaves this microcontroller unsuitable for this
project.

Arduino

2The Arduino microcontroller on the other
hand while still low-cost, is more expensive
than the picaxe alternative and is larger than
the picaxe. This microcontroller does have
the benefits of being pre-assembled making it
a minimal setup solution. Compared to the
picaxe the programming experience is much
better and due to the popularity of this
microcontroller there are many support forms
and libraries which help with the
programming of this microcontroller for the
task of this Mechanical Pong game. The
Arduino does have some limitations however,
these limitations are due the amount of output/input pins that this microcontroller
has. The specific Arduino that will be used for this project is an Arduino Uno which
has 12 digital pins. The stepper motors each use two pins to drive and there will be
four meaning a total of 8 of the digital pins are being used for driving stepper motors,
the two displays for showing the players score has 4 seven segment displays, with
using Binary to Digital converter ICs to run the displays this still requires four pins per
IC which results in 16 pins to drive all of the displays. While two shift registers could
be used this still requires 6 pins to drive all displays which brings the total amount of
pins required so far to 14 which is more than the Arduino supports, and this is only
for the stepper motors and the score displays. This could be solved by using another
Arduino such as the Arduino Mega which allows for far more digital pins, the problem
with this solution is that | do not have access to this microcontroller so instead an 12C
expander is going to be used which gives 8 digital pins per IC which runs of the SDA
and SCL lines (A4 and A5 pins), and as many as 8 of these ICs can be used running
off only two pins of the Arduino. Because of the ability for the Arduino Uno to utilise

\.

&

@
2 https://www.theen_gineerin_gprojects.com/ZO18/06/introduction-to-arduino-uno.htrgb =
'

r ».
W

0129320285

libraries, the ease of programming, support forums, and the expansion of 10 ports |
have chosen this microcontroller as the microcontroller of choice for this project.

Multiple Actuators

For this project the selection of the right actuators for movement of the XY position of
the ball and the players paddles is one of the most important decisions as the wrong
actuator would cause more difficulty in the creation of the project. This is why | have
considered stepper motors, DC motors, and servo motors for the actuators of this
project where | ultimately decided on using stepper motors.

DC Motor

DC motors are one of the simplest actuators that could be used for this project where
only an H-Bridge would be required to run it and allow the motor to go backwards
and forwards, by switching the direction of current using the H-Bridge, with the code
for running this being very simple as well as the ability to change speed. The
problem with the motor, however, is that the torque supplied by the DC motors which
| have is abysmal making any slight touch to the motor while in operation would
affect its operation either slowing it down or speeding it up. Coupled with this, there
is no way to tell where the motor is positioned at all so if there was interference
during operation it would easily lose it's simulated position in the code causing the
Mechanical Pong game to not operate properly at all, be it trying to place the Pong
ball out of the bound, or when it “bounces” off walls it could do so prematurely.
Because of these issues | have decided not to use DC motors as the actuator of
choice for this project.

Servo Motor

The servo motor is by far the simplest actuator that could have been used for this
project as it does not require any external circuitry and only requires the Arduino and
the Servo.h library to run. Unlike the DC motor the servo motor can keep track of its
position and has much more torque which are some of the most important deciding
factors in using an actuator for this. The way the servo knows where it is, is by using
a potentiometer attached to the gearing inside the servo motor used as a potential
divider and this output voltage by the potential divider is used to tell where the servo
motor is positioned. For the turning of the servo motor, the Arduino applies a PWM
signal to the servo motor which ranges between 1 to 2 milliseconds. The IC inside of
the servo motor then compares the current position of the servo motor to where it
should be according to the 1-2ms pulses. If there is a difference the IC activates the
motor using an H-Bridge (to spin in either direction) to turn to the correct angle. This
process of comparing the current position is repeated until the servo motor is pointed
in the right direction. However, this actuator did come with some downsides. The
servo motor is only able to sweep between 0 and 180 degrees which means multiple
rotations would not be viable which meant that this is unsuitable for use in this
project as the size of this Mechanical Pong game play area would not be able to be
mapped by a servo motor doing a 180 degree turn. Alongside the downside of not
being able to do full rotations, there is no speed control of the servo motor which is a

POSSESSY VOZN

0129320285

major downside as one of the key feature of the original Pong game is that the Pong
ball would speed up or slow down depending on how the ball was hit.

Stepper Motor

The final actuator that was considered, and subsequently chosen for the project, was
the stepper motor. The stepper motor is the most complex of the three to operate but
offers all of the features which are required for this project. The stepper motor has
the same requirements circuitry wise as the DC motor with the use of the H-Bridge,
but the programming side for the Arduino is more complex than driving the DC motor
as for the stepper motor to rotate it has to follow specific step orders so that it will
smoothly rotate. The stepper motor doesn’t have direct information on where it is,
instead this is managed by the code that runs the stepper motor as one step is
1/200t of a rotation (for the stepper motors | have selected, others may vary) where
by counting how many steps has been taken it can be figured out where the stepper
motor currently is. Despite the fact that the stepper motor gives no positional
feedback, this can still be made useful through the use of interrupts and flags to
make sure the stepper motor is where the code thinks it is. The stepper motor is also
able to rotate in both directions, and complete full rotations which is mandatory for
this project as there will need to be multiple rotations to cover the entire play area.
Finally, the stepper motors provide the most amount of torque out of all of the
actuators being considered, because of this any light obstruction in the way of the
stepper motor would be easily clearable with the stepper motor not losing its

position. Because of all these features the stepper motors provides | have chosen
this for my project.

H-Bridge and Stepper Motor Control

Stepper motor

The stepper motor has two coils which are used to rotate the stepper motor. In order
for the motor to rotate/step there is a drive pattern for the coils to follow, and the
reverse of this order makes the stepper rotate/step in the opposite direction. This
pattern follows by energizing the primary coil, then turning that coil off and energizing
the second coil, after this that coil is then turned off and the first coil is energized
once again but this time in the opposite polarity, for the final step in this loop, the
primary coil is turned off and the secondary coil is energized in the opposite polarity.
Due to the fact that the polarity of the coils must be switched the use of a Dual H-
Bridge chip is required as the H-Bridge gives the ability to switch the direction of
current.

H-Bridge

The H-Bridge is an integrated circuit which
takes two inputs and depending on those inputs
it switches the direction of current. The H-
Bridge circuit uses both PNP and NPN
transistor to accomplish this. When the no
signal is low on either side of H-Bridge (see

0129320285

diagram?®) by default current from Vcc is allowed to flow through the PNP transistor
and not allowing it to go through the NPN transistor, therefore the only path it has is
to go through the load, in the case of the stepper motor the load being the coil but in
the diagram it is the motor but there is no path to ground. The opposite is true when
a high signal is applied, the PNP transistor won'’t allow current to flow through it and
the NPN will taking the voltage to ground. Through the combination of this circuit a
high signal on one side and low on the other will allow current to flow through in one
direction. When these signals are reversed, low on one side high on the other, the
direction of current will have been changed through the load and changed the
direction of rotation.

3 https://arduinodiy.wordpress.com/2014/03/28/the-h-bridge/
[SSGSSV Vi,

